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Abstract. The long-range interactions between an atomic system in an arbitrary energy level and disper-
sive surfaces in thermal equilibrium at non-zero temperature are revisited within the framework of the
quantum-mechanical linear response theory, using generalized susceptibilities for both atom and electro-
magnetic field. After defining the observables of interest, one presents a general analysis of the atomic level
shift valid for any number and form of dielectric surfaces. It is shown that, at zero temperature, one re-
covers well-known results previously obtained in the linear response regime. The case of a plane dispersive
surface is elaborated on in the non-retarded regime. Calculations are given in detail for a dielectric surface
exhibiting a single polariton resonance. Theoretical predictions are presented within a physical viewpoint
allowing one to discriminate between the various interaction processes: on one hand, the level shift induced
by non-resonant quantum fluctuations, on the other hand, two potentially resonant atom-surface couplings.
The first resonant process appears for excited-state atoms and originates in an atomic de-excitation chan-
nel resonantly coupled to the surface polariton mode. It exists also at zero temperature, and has been
studied and observed previously. The second physical process, which exists at non-zero temperature only,
corresponds to the reverse process in which a thermal quantum excitation of a surface polariton resonantly
couples to an atomic absorption channel. This novel phenomenon is predicted as well for a ground state
atom, and can turn the ordinary long-range van der Waals attraction of atoms into a surface repulsion at
increasing temperatures. This opens the way to the control and engineering of the sign and amplitude of
van der Waals forces via surface temperature adjustment.

PACS. 42.50.Ct Quantum description of interaction of light and matter; related experiments – 34.50.Dy
Interactions of atoms and molecules with surfaces; photon and electron emission; neutralization of ions –
12.20.-m Quantum electrodynamics – 42.25.Gy Edge and boundary effects; reflection and refraction

1 Introduction

Van der Waals (vW) interactions between neutral polar-
isable systems represent the ubiquitous force of nature,
at the action across all types of material bodies. They
are at the origin of the cohesion of matter. They can be
described as the interaction between fluctuating electric
dipoles spontaneously induced in one of the neutral bod-
ies, and their dipolar image in the other material system.
One paramount example of vW interactions is the long
range dipole attraction between an atomic system and a
material body. For plane wall, its 1/z3

0 dependence in the
non-retarded regime (z0: atom-wall separation) has been
documented long ago, starting with the pioneering work
of Lennard-Jones [1]. Retardation effects have been later
considered by Casimir and Polder [2]. Due to their impor-
tance in atomic force microscopes [3] or in cavity QED [4],
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atom-surface interactions have been the subject of a re-
newed interest in the recent years (for a recent review,
see [5]).

Over the years, a great number of theoretical works has
been devoted to the study of atom-surface interactions.
The interaction of an atom ground state with metallic
or dielectric walls has been analysed, as well as the be-
haviour of excited atomic states (energy shift, level broad-
ening/narrowing) in front of either a perfect reflector, or
metallic or dielectric surfaces. Both retarded and non-
retarded regimes have been considered ([5] and references
in). The case of an excited atom interacting with a disper-
sive surface has been analysed more recently from both
theoretical and experimental viewpoints [6–15], in partic-
ular with respect to the possibility of a resonant coupling
between an atomic de-excitation channel and surface po-
lariton resonances, leading to an enhancement and a pos-
sible inversion of the surface forces (the vW attraction
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being turned into a vW repulsion [12,13]) and to impor-
tant modifications of the atomic decay channels (surface-
induced alteration of branching ratios, etc.) [13,14].

Most of the above works has been done by assuming
that the interacting surface is at vanishing temperatures
(T ∼ 0) and there is no thermal excitation of the surface.
The consideration of surfaces at non-zero temperatures is
important with respect to the study of gas-wall thermal
exchanges and the establishment of thermal equilibrium
between a gas and its container, as well as the prediction
of heats of atom adsorption and the dynamics of adsorp-
tion/desorption. A few previous works have considered the
case of non-zero surface temperatures [10,16–19].

In this article, we revisit the problem of ground or
excited atoms interacting with non-zero-temperature sur-
faces, with a special emphasis on the case of dispersive
surfaces when surface polariton modes can be thermally
excited. We will analyse the possibility of a resonant cou-
pling between a quantum of surface excitation, and atomic
electric dipole absorption, as well as the influence of this
virtual energy exchange on surface forces. In Section 2,
the equations of motion are established for the most gen-
eral case of e.m. field propagation, with any boundary
surfaces, but in this article, the detailed analysis will be
subsequently restricted to the non-retarded case, leaving
the full analysis of the retarded characteristics to a forth-
coming publication. Section 3 is devoted to the properties
of atom-surface interaction at non-zero temperature, in
the particular case of a plane surface exhibiting a single
surface-polariton resonance, and examines the influence of
a resonant energy coupling. Two appendices present the
detailed derivation of the equations describing the atom-
surface interaction for T �= 0 (Appendix A), and the com-
parison with previous works (Appendix B).

2 Atom-surface interaction at finite
temperature

In this section, we calculate the dynamic Stark-shift of
any internal energy-level of an atom located near a sur-
face, this surface being supposed in thermal equilibrium
with the black-body radiation (BBR) at temperature T .
The question of what is measured exactly in a spec-
troscopy experiment, and how the experimentally mea-
sured frequency-shift can be related to our result will be
discussed later on, as well as the thermodynamic nature
of this frequency-shift.

First, we are looking for the correction to the “energy”
of the atomic eigenstates due to the interaction with a
thermal field, and, into this correction, we are interested
only by the contribution of the interface between vacuum
and any real (dissipative) medium.

2.1 Assumptions

What is called “field” denotes the vacuum field-modes in
presence of the interface with the half-infinite dielectric (or

metal) space — e.m. modes and material medium being in
thermal equilibrium at temperature T . Excitations of the
surface are supposed to be in equilibrium at the same tem-
perature and are included under the label “field”, which
means “reservoir of oscillators”. The atom is supposed to
be at rest at a position �r0, in a given internal state |a〉. To
simplify, we suppose that |a〉 is non-degenerate. The xOy
plane is chosen as the interface, and the atom-surface dis-
tance is z0.

The eigenstates of the atomic Hamiltonian Hat are la-
belled with small letters: “i, k, ...”, each letter representing
a set of quantum numbers. Those of the field Hamiltonian
Hrad are labelled with capital letters: “I, K, ...”. The
states of the total system without interaction are then de-
noted: |I, i〉.

The probability for the field to be in the “I”
state is given by the canonical distribution: p(I) =
e−βEI/

∑

I

e−βEI . An eigenstate of the field is a set of

modes: {ωk}, and the mean number of occupation of each
mode by photons is supposed to depend only on its fre-
quency and on the field-temperature:

N̄k =
1

eβ�ωk − 1
(2.1)

with β = (kBT )−1.
The interaction, in first approximation, will be de-

scribed with the dipolar Hamiltonian: Hint = −�µ · �D(�r0),
where �D(�r0) is the displacement field at the location of
the atom and �µ the electric dipole moment operator of
the atom. This choice of the multipolar Hamiltonian [20]
allows one to find the contribution of the Coulomb field
as the near-field limit of the retarded interaction, and one
can have at the same time the long-range limit. One can
choose the Hamiltonian Hrad = −�p · �A(�r0) where �p is the
electron linear momentum and �A(�r0) the vector-potential
of the transverse field. However, one thus has to add the
Coulomb interaction to obtain the van der Waals part of
the shift [20,21].

As the near-field contribution for real surfaces is com-
ing for the major part from evanescent waves, it is nec-
essary to introduce in the calculation evanescent waves
propagating along the interface (surface-modes) as well
as waves propagating into the vacuum and the bulk.
Barton, for example [10], models van der Waals interaction
uniquely by surface-modes. They are combined modes of
the electromagnetic field and of the polarization field in
the medium, and can be found by solving the Laplace
equation (ω → 0). Using this method, he obtains the
electrostatic part of the interaction. About these surface-
polaritons, one can see for example references [22,23].

To achieve the goal to obtain the near-field limit
as well as the long-range one, we will work with field-
modes which are plane-waves, solutions of Maxwell equa-
tions with boundary-conditions at the material interface.
The translational invariance into the z-direction is thus
lost and only the wave-vector components parallel to the
interface have to be real, into the vacuum as well as
into the dissipative dielectric. This dielectric medium is
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phenomenologically modelled by a complex dielectric con-
stant. Maxwell equations can be solved in this geome-
try [24]. That gives us the ( �K, z; ω) Fourier component
of the linear-susceptibility of the field, �K being the wave-
vector component along the interface.

We have to remember that this linear susceptibility
does not depend on the initial state of the field, so it will
not depend on temperature.

2.2 Thermodynamical statistics: definition
of the observable of interest

We will not develop here all the details of the calculation of
the energy level-shift in the linear-response formalism (see
Refs. [7,8]). They are also developed in [25] for an isotropic
vacuum (without surfaces). We use the same notations as
in a previous article devoted to the case of a birefringent
medium [7,8,11].

Let us examine here the thermodynamical statistics of
the perturbation.

From the quantum-mechanics point of view, the inter-
action Hamiltonian Hint = −�µ · �D(�r0) is considered as a
small perturbation to the Hamiltonian Hat +Hrad , whose
eigenstates have been defined before. The two operators,
�µ and �D, being non-diagonal in the basis |I, i〉, the first
non-zero correction to the energy-levels of the total sys-
tem “atom + field” is the second order one. This correc-
tion is the interaction energy of two sub-systems, and is
experienced by the atom as a z-dependent potential. This
provides us with the quantum mechanical correction, as
in the zero-temperature case.

At non-zero temperature, one has to take the statisti-
cal expectation value with the Gibbs distribution of the
total system before coupling (energy levels: EI +Ei). One
obtains in this way the correction to free energy δF of the
system “atom + field” due to the coupling between its two
parts (cf. Landau and Lifchitz [26]). Obviously, it is possi-
ble to deduce from this δF a correction to the energy δE,
or to the entropy δS, but each of them are corrections to
free energy, energy, or entropy of the total system, atom
and field being supposed in overall (non-constrained) equi-
librium at temperature T [27].

On the opposite, we consider here the expectation
value with the Gibbs distribution of the reservoir alone
(energy levels EI), the atom being constrained in the same
quantum state |i〉. We do not take the trace over the whole
system states but only over the field’s states. Following the
detailed analysis of Barton [28], we will identify the result
of this calculation with the free-energy shift of the cou-
pled system atom + field, the atom being constrained to
stay in a given state |i〉. It represents as well the dynam-
ical Stark shift in presence of the Black Body Radiation
(BBR). Then we have identified the quantity calculated
by doing statistics on quantum perturbation, taking the
trace only over field states. It remains to know what is
measured in an actual experiment.

Here, we are interested in the response of a dilute
vapour near a surface to a probe-laser of given frequency

ωif . In this way, we are measuring the surface-induced
frequency-shift of a given transition, |i〉−|f〉 (in fact a dif-
ference between the two level-shifts). What is monitored
can be considered as two constrained thermal equilibri-
ums, the atomic gas being placed in an oven maintained
at temperature T .

If the experiment with the probe-laser can be con-
sidered as an isotherm and reversible process, then only
“work” is given to the total system “atom + field”, in or-
der to change the atomic state from |i〉 to |f〉. This work
does correspond to an increase in free-energy, as we cal-
culate here. So we test a difference between two “free-
energy”-shifts. In contrast, what we name the total “en-
ergy” of the system would have to take into account the
exchange of heat with the heat-bath, through the emission
or the absorption of photons by the walls.

What are the conditions on the measurement process
needed to get a reversible spectroscopy experiment?

To trace only over the field-states means that we can
ignore the atom-field correlation and write the density ma-
trix of the total system as a tensor product of the atomic
density matrix by the field’s one. Then the shifts and tran-
sition rates can be expressed with the linear susceptibili-
ties of each sub-system [25]. For zero temperature, it is the
case if the characteristic atom-probe interaction time, τ , is
very long compared to the correlation time of the vacuum
field, but very short compared to the mean life-time of
the excited atom (coarse-grain average). At temperature
T , we assume that the atom prepared in state |i〉 has a
very small probability during time τ to make a transition
to level |f〉 through any type of relaxation, either BBR (in
absorption or emission) or spontaneous emission. This is
satisfied if the previous condition on the interaction time,
τ , still applies with the vacuum field replaced by the BBR
field, and the atomic lifetime taking into account absorp-
tion and stimulated emission processes. This provides the
conditions to conduct a reversible experiment with a con-
strained thermal equilibrium.

2.3 Free-energy shift of the coupled atom-surface
system, for an atom in a constrained state |i〉
The first non-zero correction coming from the coupling
is the second-order one. When one takes the trace of this
contribution over all reservoir states at temperature T , one
finds the correction to the free-energy of the total system
“atom in the |i〉 state + field”, due to the interaction:

δFi =
1
�
P
∑

I,K,k

p(I)
DIK

α (�r0)DKI
β (�r0)µik

α µki
β

(ωI − ωK) + (ωi − ωk)

= − 1
�
P
∑

I,K,k

p(I)

+∞∫

−∞
dω

DIK
α (�r0)DKI

β (�r0)µik
α µki

β

ω + ωki

× δ(ω − ωKI). (2.2)

The letters: I, K or i, k denote matrix elements
of the operators Displacement Field and Dipolar Mo-
ment respectively between field-states or atom-states
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(ωKI = ωK − ωI). The Greek subscripts denote Cartesian
components and have to be summed when they are re-
peated. P means principal part, excluding states giving
a null denominator, and the probability p(I) of the field
state |I〉 has been defined above (Eq. (2.1)).

Introducing the time-dependent expansion of
the delta-distribution, δ(Ω) = (1/2π)

∫ +∞
−∞ dt eiΩt

and the time-dependent field operator, D̃α(�r, t) =
eiHRt/�Dα(�r)e−iHRt/�, one obtains:

δFi = − 1
2π�

P
∑

I,K,k

p(I)

+∞∫

−∞
dω

×
+∞∫

−∞
dt

DIK
α (�r0)DKI

β (�r0)µik
α µki

β

ω + ωki
eiωte−iωKI t

δFi = − 1
2π�

P
∑

k

µik
α µki

β

+∞∫

−∞
dω

×
+∞∫

−∞
dt

∑

I,K

p(I)D̃IK
α (�r0, t)D̃KI

β (�r0, 0)

ω + ωki
eiωt. (2.3)

We can write also the integrand’s numerator as:

∑

I,K

p(I)D̃IK
α (�r0, t)D̃KI

β (�r0, 0) =

∑

I

p(I) 〈I|D̃(
α�r0, t)

{
∑

K

|K〉 〈K|
}

D̃(�r0, 0) |I〉

=
∑

I

p(I) 〈I|D̃α(�r0, t)D̃β(�r0, 0) |I〉

in order to introduce the statistical mean value on the
reservoir-states of the operator: D̃α(�r0, t)D̃β(�r0, 0). We
represent this mean value by an angular bracket and define
the function:

〈
D̃α(�r0, t)D̃β(�r0, 0)

〉
= gαβ(t).

Then the correction to free-energy of the constrained
equilibrium atom-field can be written:

δFi = − 1
2π�

P
∑

k

µik
α µki

β

+∞∫

−∞
dω

gαβ(ω)
ω + ωki

(2.4)

where we have used the Fourier Transform of the function
gαβ(t):

gαβ(ω) =
1
2π

+∞∫

−∞
dtgαβ(t)eiωt.

Finally, the fluctuation-dissipation theorem [26] relates
the F.T. of this correlation function gαβ(t) to the F.T.
of the linear susceptibility of the field, defined by

Gαβ(�r, �r ′; t) =
i

�

〈[
D̃α(�r, t), D̃β(�r ′, 0)

]〉
θ(t). (2.5)

θ(t) is the Heaviside step function, and vertical brackets
indicate a commutator. Angular brackets denote statisti-
cal expectation value with Gibbs distribution.

This theorem leads to the form (see Appendix B in
Ref. [8]):

ImGαβ(�r, �r ′; ω) =
1
2�

gαβ(�r, �r ′; ω)(1 − e−�ω/kBT ). (2.6)

Therefore, it introduces the influence of temperature in
the dynamic Stark shift that we are looking for

δFi = − 1
π

P
∑

k

µik
α µki

β

+∞∫

−∞
dω

ImGαβ(�r0, �r0; ω)
(ω + ωki)(1 − e−�ω/kBT )

.

(2.7)
This formula has previously been derived by Wylie and
Sipe [8]. These authors deal with the zero-temperature
case only, and then reduce the integral over ω to positive
frequencies. They call it an “energy” shift, and that is
indeed the case at zero temperature.

2.4 Predicted shifts — Comparison with previous
works

2.4.1 Zero temperature shifts

The integral (2.7) is only over positive frequencies in this
case and the calculation can be done by making use of
the complex plane to transform the integration over real
frequencies into two contributions, one of them being pos-
sibly resonant. For a non-degenerate level |a〉:

(δEa)surf = δEQF
a + δEres

a

δEQF
a = − 1

π

∑

n

ωnaµan
α µna

β

∞∫

0

dξ
GR

αβ(�r0, �r0; iξ)
ξ2 + ω2

na

.

(2.8a)

δEres
a = −

∑

n

µan
α µna

β ReGR
αβ(�ro, �r0; ωna)θ(ωan).

(2.8b)

The quantum fluctuations part of the energy shift is
present for all states and can be written as a function
of the polarizability of the atom in the considered level
|a〉, defined by

αa
αβ(t) =

i

�
〈a |[µα(t), µβ(0)]| a〉 θ(t)

and its Fourier Transform:

αa
αβ(ω) =

+∞∫

−∞
dtαa

αβ(t)eiωt

= lim
η→0+

[
2
�

∑

n

ωnaµan
α µna

β

ω2
na − (ω + iη)2

]

, (2.9)
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δEQF
a = − 1

π

∑

n

ωnaµan
α µna

β

∞∫

0

dξ
GR

αβ(�r0, �r0; iξ)
ξ2 + ω2

na

= − �

2π

∞∫

0

dξGR
αβ(�r0, �r0; iξ)αa

αβ(iξ). (2.10)

The second contribution of equation (2.8) that is called
resonant exists only for an excited state.

2.4.2 Surface shifts at finite temperature

The detailed calculation is given in Appendix A. The fi-
nal result exhibits a kind of symmetry between the two
interacting parts of the system, atom and surface, in such
a way that their respective excitations contribute to the
shift. We obtain:

δFa = +
∑

n>a

µan
α µna

β

1

e
�ωna
kB T − 1

ReGαβ(ωna)θ(ωna)

−
∑

n′<a

µan′
α µn′a

β

e
�ω

an′
kBT

e
�ω

an′
kB T − 1

ReGαβ(ωan′)θ(ωan′)

− kBT
∞∑

k=0

′Gαβ(iξk)αa
αβ(iξk). (2.11)

The third term is a sum over the discrete frequencies: ξk =
ik2πkBT/�, the prime after the sign sum meaning that
one has to multiply by one half the first term k = 0.

Formula (2.11) includes three distinct contributions:

(i) the first one can be written as:

δF abs
a = +

∑

n>a

µan
α µna

β N̄naReGαβ(ωna)θ(ωna)

(2.11a)
with the photon thermal population factor N̄na de-
fined by equation (2.1), with ωk = ωna.
It corresponds to a virtual dipole absorption of the
atom (it exists only for ωn > ωa), cancels at zero
temperature (when N̄na = 0) and appears for T �= 0.
The physical process involved in this contribution can
be viewed as a virtual energy exchange between a
thermal excitation of the surface modes at frequency
ωna (proportional to N̄na) and an atomic dipole ab-
sorption. As will be seen below (Sect. 3.2), this term
becomes resonant in presence of surface polaritons at
frequency ωna (i.e., poles of Gαβ). In the following,
we will call this process a coupling in absorption;

(ii) the second contribution can be written as:

δF em
a = −

∑

n′<a

µan′
α µn′a

β (N̄an′+1)ReGαβ(ωan′)θ(ωan′ ).

(2.11b)
It describes the contribution of virtual atomic emis-
sion processes (it exists for excited states only, with

ωa > ωn′), and is the exact symmetrical of the ab-
sorption term. The physical process is indeed a vir-
tual energy exchange between an atomic dipole emis-
sion at frequency ωan′ and a simultaneous absorption
in a surface-mode. Two terms contribute, one com-
ing from virtual spontaneous emission processes (the
only one remaining at T = 0), and the second one
coming from emission processes stimulated by ther-
mal photons (proportional to N̄an′). In the following,
we will call this process a coupling in emission. Note
also the sign change between absorption and emission
contributions, which originates in the opposite dipole
phases of the processes;

(iii) the third contribution of equation (2.11) originates
in the non-resonant quantum fluctuations (QF) of
the atomic dipole. This is the contribution derived
long ago by McLachlan [16] for a ground state atom.
McLachlan did not derive the resonant absorption
term (2.11a), which comes from the contribution of
the poles of the linear susceptibility located on the
real axis (when one performs the integration in the
complex plane — see Appendix A).
For T → 0, the QF contribution can be written as
the well-known integral over imaginary frequencies:

− kBT

∞∑

k=0

′Gαβ(iξk)αa
αβ(iξk) −→

T→0 K

− �

2π

∞∫

0

dξGαβ(iξ)αa
αβ(iξ). (2.11c)

At T = 0, this quantity is the only one remain-
ing along with the spontaneous emission contribution
(Eqs. (2.8–2.10)).

All the formulae derived in this section apply to any num-
ber of surfaces with arbitrary forms, the remaining prob-
lem being to get the linear field susceptibility, G. In the
next section, we restrict ourselves to the case of a single
plane surface in the non-retarded regime.

3 Plane dielectric surface with one
surface-polariton in the van der Waals regime

To illustrate the effect of finite temperature, let us consider
a one surface-polariton model for a plane dielectric sur-
face. This is the case of sapphire with its optical axis per-
pendicular to the surface, whose main surface-polariton at
12.2 µm is known to be resonant with a caesium transi-
tion at 12.15 µm [9,13,29]. In the case of a single surface-
polariton resonance, the dielectric constant of the medium
can be modelled as:

ε(ω) = η
ω2

L − ω2 − iωΓ

ω2
T − ω2 − iωΓ

(3.1)

where ωL and ωT are the frequencies of the longitudinal
and transverse bulk modes respectively. The frequency of
the surface-polariton is then ωs =

√
(ηω2

L + ω2
T )/(η + 1).
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When we take as unit this frequency ωs, we obtain for
real frequencies:

ε(ω) = η
x2

L − x2 − ixδ

x2
T − x2 − ixδ

, with x =
ω

ωs
, δ =

Γ

ωs
.

For the QF contribution, we will have to use the dielec-
tric constant along the imaginary frequency axis, taking
ω = iξ, and the function ε(iξ) is then real, positive and
monotonous. In the same way, we can take as unit the
polariton frequency. That gives:

ε(iξ) = η
x2

L + y2 + yδ

x2
T + y2 + yδ

, with: y =
ξ

ωs
, δ =

Γ

ωs
.

Numerical values used in our model are given in Ap-
pendix B, where the comparison with Barton’s ap-
proach [10] is done. This author works only in the elec-
trostatic case, for a ground or excited atomic state. His
result is given under the form of an integral over real fre-
quencies. In this way, one could obtain neither the dis-
crete sum over imaginary frequencies, nor the absorption
or emission terms separately, which get important in the
resonant case. However, we show that his result is the
exact counterpart of the integral (2.7) in a one surface-
polariton model and non-retarded case (Appendix B).

3.1 Non-retarded van der Waals regime at zero
temperature: contribution to the surface-induced
energy-shift originating in a transition such that
2ωnaz0/c � 1

The linear susceptibility of the reflected field in the non-
retarded van der Waals regime is well known (“electro-
static” approximation) [8]:

GR
xx,yy(z0, z0; ω) =

1
(2z0)3

ε(ω) − 1
ε(ω) + 1

=
1

(2z0)3
R(ω)

GR
zz(z0, z0; ω) =

2
(2z0)3

ε(ω) − 1
ε(ω) + 1

=
2

(2z0)3
R(ω) (3.2)

where ε(ω) and Gαα are complex functions of the fre-
quency; R is the non-retarded surface response, (ε −
1)/(ε+1) (i.e., static Fresnel coefficient).

From equations (2.8) and (3.2), one sees that, in the
non-retarded regime, the contribution to the shift of a
given transition will have the same z−3

0 dependence for
the resonant or the non-resonant part. The reason is that
we can keep the same “static” G function (3.2) to integrate
over imaginary frequencies iξ when ξ is growing from zero
to infinite.

In fact, into the integral (2.8a):

δEQF
a = − 1

π

∑

n

ωnaµan
α µna

β

∞∫

0

dξ
GR

αβ(�r0, �r0; iξ)
ξ2 + ω2

na

,

the factor e−2ξz0/c appearing in the retarded susceptibility
GR

αβ(�r0, �r0; iξ) — see [7,8] —, as well as the Lorentzian

form of the atomic polarizability will cut the integration
over ξ at frequencies smaller than ωna, where the static
approximation (3.2) is valid.

For a coupling in absorption (ωna > 0) and within our
one-polariton model of the surface, the non-resonant part
of the shift δEQF

a can be written:

δEQF (na) = − (|µan
x |2 +

∣
∣µan

y

∣
∣2 + 2 |µan

z |2)
(2z0)3

× 1
π

∞∫

0

du
R(iuxna)
1 + u2

(3.3)

with: u = ξ/ωna, xna = ωna/ωS > 0. So iuxna = iξ/ωS is
the imaginary frequency in unit ωS .

Splitting the contributions of the dipole-components
parallel and perpendicular to the surface with (|µan

x |2 +
|µan

y |2) = |µan
‖ |2, we obtain:

δEQF
‖,z (xna) = −Ena

‖,z

⎡

⎣ 1
π

∞∫

0

du
R(iuxna)
1 + u2

⎤

⎦ (3.4)

where

Ena
‖ =

∣
∣
∣µan

‖
∣
∣
∣
2

(2z0)3
; Ena

z =
2 |µan

z |2
(2z0)3

. (3.5)

These energies are of the same order of magnitude (about
2 kHz(µm)3, for a ground state).

For a coupling in emission (ωan > 0): one obtains for
the total shift, in the non-retarded regime, from equa-
tions (2.8a, 2.8b):

δE‖,z(xan) = Ean
‖,z

⎡

⎣−Re[R(xan)] +
1
π

∞∫

0

du
R(iuxan)
1 + u2

⎤

⎦

(3.6)
where we have now: xan = ωan/ωS > 0.

3.2 Van der Waals regime at finite temperature:
contribution to the surface-induced energy-shift
coming from a transition such that 2ωnaz0/c � 1

From definition (2.9), one has for imaginary frequencies:

αa
αβ(iξ) =

2
�

∑

n

ωnaµan
α µna

β

ω2
na + ξ2

.

The contribution of the transition a → n (ωna > 0) in
absorption will be then (Eq. (2.11))

δF abs(ωna) = +µan
α µna

β

{
1

e
�ωna
kBT − 1

ReGαβ(ωna)

−kBT

�

∞∑

k=0

′Gαβ(iξk)
2ωna

ω2
na + ξ2

k

}

(3.7)
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with ξk = ik(2πkBT/�).
And for a transition a → n′ (ωan′ > 0) in emission:

δF em(ωan′) = −µan′
α µn′a

β

⎧
⎨

⎩

e
�ω

an′
kB T

e
�ω

an′
kBT − 1

ReGαβ(ωan′)

−kBT

�

∞∑

k=0

′Gαβ(iξk)
2ωan′

ω2
an′ + ξ2

k

}

. (3.8)

For a transition satisfying the condition 2ωnaz0/c � 1, the
real part of the linear susceptibility at real frequency will
be of the form 1/z3

0 (3.2). However, in the discrete sum,
as it was the case in the integral (2.8a), the frequency is
increasing with k; then one has to consider the retarded
susceptibility at imaginary frequencies, which involves the
exponential factor e−2ξz0/c, multiplied by a Lorentzian
lineshape of width ωna. The non-retarded limit can be
considered as a first approximation for G at all values
of ξk,

GR
xx,yy(z0, z0; iξ) =

1
(2z0)3

ε(iξ) − 1
ε(iξ) + 1

.

But this is actually valid only for z0 � c/2ωna, and then
obtained only when one keeps all the k-terms in the sum.

3.2.1 Quantum fluctuations contribution

One can see that the discrete sum in equations (3.7, 3.8)
lies always between two “static” limits, both in 1/z3

0 ,
namely the first term k = 0, which is the long-range limit
of the sum at non-zero temperature, expressed in function
of the static value G(0), and the total sum using non-
retarded G. For example, for the component of the dipole
parallel to the surface, the contribution to the shift of the
discrete sum for one given transition obeys to:

kBT

�ωna

∣
∣
∣µan

‖
∣
∣
∣
2

(2z0)3
ε(0) − 1
ε(0) + 1

≤ kBT

�

∞∑

k=0

′Gxx(iξk)
2ωna

∣
∣
∣µan

‖
∣
∣
∣
2

ω2
na + ξ2

k

≤ kBT

�ωna

∣
∣
∣µan

‖
∣
∣
∣
2

(2z0)3
r[T, ωna] (3.9)

with

r[T, ωna] =
∞∑

k=0

′ ε(iξk) − 1
ε(iξk) + 1

2ω2
na

ω2
na + ξ2

k

(let us remind that the prime after the sign sum means
that the first k = 0 term is weighted by a factor 1/2).

It is seen that if the temperature is high enough and
the distance not too small, the k = 1 term which includes
the exponential e−2

2πkB T

�
z0/c vanishes, as well as the k > 1

contributions. Only the k = 0 term gives a significant
contribution.

At room temperature, this first term:

kBT

�ωna

1
(2z0)3

ε(0) − 1
ε(0) + 1

Fig. 1. Variation with the distance of the non-resonant part
of the free energy-shift (QF) normalized with respect to the
vdW shift of the same transition for a perfect reflector, E0 =
|µan|2/(2z0)

3. One uses a normalized atom-surface distance,
� = 2kSz0 = (4π/λS)z0. In our single polariton model, � ≈ 1
when z0 = 1 µm for the sapphire surface-polariton at λS =
12.2 µm. The dotted horizontal lines give the asymptotic values
at z0 → 0 (total electrostatic sum) and at z0 → ∞ (k =
0 term in Eq. (3.9)) for two different temperatures. The full
curves are deduced from exact retarded susceptibilities. The
full horizontal line gives the asymptotic value at z0 → 0 for
T = 0 K.

represents for all transitions the long range limit of the
discrete sum, the upper limit being the non-retarded shift
(see Fig. 1).

In most of the experimental cases, one operates be-
tween 300 K and 600 K, and atoms are tested at dis-
tances of the order of 100 nm or less from the dielectric
surface, for transitions which satisfy kBT ≈ �ωna. For ex-
ample, the caesium transition at 12.15 µm (7P1/2–6D3/2),
resonant with a surface-mode of sapphire, is such that:
θ = kBT/�ωS ≈ 0.25 at room temperature. For CaF2 or
BaF2, the caesium 8P3/2 level has a resonant transition
at 40 µm for which: θ ≈ 1 at room temperature [29,30]
(Fig. 2).

In a first approach, for atoms very near of the surface
and at usual temperatures, we can replace the discrete
sum by its upper limit, easier to calculate, but one has
always to add a term with the real part of G (Eq. (3.7)).

3.2.2 Total free-energy-shift

From equations (3.7, 3.8) we obtain, for a virtual coupling
in absorption, in the near-field case and at usual temper-
atures in spectroscopy experiments :

δF abs
xx (ωna) = µan

x µna
x

1
(2z0)3

(
1

e
�ωna
kB T − 1

Re
[
ε(ωna) − 1
ε(ωna) + 1

]

− kBT

�ωna
r[T, ωna]

)

. (3.10)
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Fig. 2. Temperature dependence of parameter θ in the case of
Al2O3 and CaF2.

In the same way, for a virtual coupling in emission:

δF em
xx (ωan′) = µan′

x µn′a
x

1
(2z0)3

×
⎛

⎝− e
�ω

an′
kB T

e
�ω

an′
kBT − 1

Re
[
ε(ωan′) − 1
ε(ωan′) + 1

]

+
kBT

�ωan′
r[T, ωan′ ]

⎞

⎠ .

(3.11)

In Figures 3 and 4, the variations of the atomic energy
shift are represented near the resonant coupling, in the
frequency domain (Fig. 3) and the temperature domain
(Fig. 4). These graphs show off the importance of virtual
absorption or emission resonant couplings in the ampli-
tude and sign of surface-induced level shifts, as well as the
prominent influence of surface temperature on absorption
couplings.

A noteworthy prediction of this study is to pave the
way to a control of the sign of vW forces, via temperature
monitoring, as well as cancelling those forces. As shown
in Figure 4, for a resonant coupling in absorption, when
the atom resonance is located below the surface-polariton
resonance frequency (ωat = 0.99ωS), the vW forces can-
cel and reverse for kBT ≈ 0.3�ωS. Indeed, at very low
temperatures (T = 0), there is no resonant coupling: the
vW forces originate only in quantum fluctuations and are

Fig. 3. Frequency dispersion characteristics of the free-energy
shift for absorption or emission couplings at two different tem-
peratures. Note that the resonance for a virtual coupling in ab-
sorption appears only for finite temperatures. The resonance
sign is opposite to that of the resonance induced by virtual
emission couplings.

purely attractive. For increasing temperatures, the atom-
surface resonant coupling gets predominant. Since the rel-
ative phases of the atom dipole and surface polariton mode
(driven by temperature excitations) are such that this res-
onant contribution is repulsive, the surface forces vanish
for a given temperature and then get repulsive (Fig. 4;
absorption couplings, x = 0.99).

Those results, obtained from equations (3.10, 3.11) for
a single resonance model, would not be basically modified
for a real multi-resonant dielectric surface. As a practical
example, for the 12.2 µm sapphire surface-polariton at a
temperature T = 450 K, the reduced temperature factor
is θ ∼ 0.4, and the mode occupation number is N̄an′ =
0.09, thus multiplying the dielectric image coefficient (in
emission) of Cs (6D3/2) at 12.15 µm by a factor 1.09. This
yields, for the contribution of the 6D3/2–7P1/2 transition
to the sapphire/6D3/2 C3 coefficient, the theoretical value
of –119 kHz (µm)3, instead of –109 at zero temperature
(see Ref. [13], Tab. 1).
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Fig. 4. Temperature-dependence of the free-energy shift for
three different atomic resonances frequencies. x = ωat/ωS =
νat/νS is the transition frequency in unit of surface-polariton-
frequency. θ = kBT/�ωS = kBT/hνS is the “temperature” in
unit of polariton energy quantum. Note the change of sign be-
tween T = 300 K (θ = 0.25) and T = 600 K (θ = 0.5) in the
case of absorption couplings with x = 0.99. The numerical val-
ues used in these figures correspond to the sapphire polariton
at 12.2 µm.

For very high temperatures (i.e., kBT 	 �ωna), one
can replace r[T, ωna] by its first term: [ε(0)− 1]/[ε(0)+ 1]
in equations (3.10, 3.11) and we would obtain in the near-
field case a 1/z3

0 dependence, at first order in �ω/kBT :

δF abs
xx (a, ωna > 0) ≈ + µan

x µna
x

1
(2z0)3

kBT

�ωna

×
[

Re
[
ε(ωna) − 1
ε(ωna) + 1

]

− ε(0) − 1
ε(0) + 1

]

(3.12)

δF em
xx (a, ωna′ > 0) ≈ µan

x µna
x

1
(2z0)3

kBT

�ωan′

×
[

Re
[

−ε(ωan′) − 1
ε(ωan′) + 1

]

+
ε(0) − 1
ε(0) + 1

]

.

(3.13)

At first order in �ω/kBT , it is linear on temperature, ex-
cept for very low transition frequency, where one has

Re
[
ε(ωna ≈ 0) − 1
ε(ωna ≈ 0) + 1

]

≈ ε(0) − 1
ε(0) + 1

,

for which this first order term vanishes. But our assump-
tions to have an adiabatic experiment cannot hold in this
high temperature limit (see Sect. 2.2).

We can notice that in the long-distance case at finite
temperature, there is always a 1/z3

0 term (coming from the
term: k = 0) but also, coming from the real part, a 1/z0

or 1/z2
0 oscillating term depending on the observed dipole-

component. This could explain the very long range inter-
action observed in the Sokolov experiment [31] at room
temperature, at least if the metal of the slit has surface
plasmon resonances in the high frequency range. This re-
tarded interaction at finite temperature is examined in
details in our next article.

4 Conclusion

In this article we have derived a general expression giving
the energy shift of a quantum level of an atom interacting
with material surfaces in thermal equilibrium at tempera-
ture T . This study is valid for all types and geometries of
surfaces, considers any atomic energy level and takes into
account field propagation effects. The case of non-retarded
atom-surface interactions has been analysed here in more
detail, and explicit expressions have been derived for the
energy of atomic ground-state or excited states interact-
ing with dispersive plane surfaces. In the derivation of the
surface-induced energy shift, emphasis has been put on a
mathematical form underlining the physical viewpoint and
allowing one to discriminate between the various physical
processes.

First, at vanishing temperatures, two already well-
known phenomena in atom-surface interactions are dis-
criminated, on one hand zero-point quantum fluctuation
processes, and on the other hand a resonant van der
Waals coupling in the case of an excited atom in reso-
nance with surface-polariton modes. At finite tempera-
tures, these processes are modified, in particular for the
resonant atom-surface coupling which is amplified by the
emergence of thermal photons stimulating virtual emission
processes. In addition, our theoretical approach shows off
a new type of resonant coupling process in which a thermal
quantum excitation of a surface mode resonantly couples
to an atomic absorption channel. This process has the no-
ticeable property of applying to a ground state also. As
any resonant coupling between two oscillators, it allows
one to enhance and eventually phase-reverse the interac-
tion potential, making repulsive the van der Waals long-
range forces acting on ground-state atoms. In this way,
sign and amplitude of vW forces could be precisely con-
trolled via surface temperature monitoring. The observa-
tion of such a temperature-controlled resonant coupling
would be a direct test of the quantum nature of surface
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polaritons [32]. This study can also be applied to metal-
lic surfaces exhibiting surface plasmon resonances. How-
ever, in that case, some additional features of the material
should be taken into account, like the spatial dispersion
of the material response (i.e., wave vector dependence of
the permittivity due to non-local electronic response).

The results discussed in detail in this article are valid
in the non-retarded limit, which means such conditions
as z � λat/2π (λat, characteristic atomic wavelength).
These conditions represent severe restrictions to the valid-
ity range of atom-surface distances. For larger distances,
retardation effects (Casimir regime) should be taken into
account, as will be discussed in a forthcoming article. Re-
tardation effects get in particular important when one con-
siders atoms confined between two dielectric walls (dielec-
tric nano-cavity [33]). On the other hand, for very small
distances (z < 1 nm), the details of the surface (roughness,
etc.) become prominent, as well as higher-order contribu-
tions to the vW interaction (dipole-quadrupole, etc.), and
electronic cloud overlapping. The comprehension of atom-
surface interactions at all distances and any temperature
is central to the understanding of the nature of these fun-
damental forces. Every advance in this field allows one
to set stronger constraints on the existence of new weak
forces predicted by unification models in particle physics.
They are also a key point in the operation of nanometric
devices.

The authors wish to thank C. Henkel and D. Bloch for stimu-
lating discussions and useful comments. They are very grate-
ful to J. Baudon for a careful reading of the manuscript. This
work was partially supported by the European Union under
the Research Training Network FASTNet (European contract
HPRN-CT-2002-00304).

Appendix A: Temperature dependence
of the level-shift of an atomic-state
near an interface

In a second-order perturbation calculation and using the
fluctuation-dissipation theorem, one finds, for the contri-
bution of the reflected thermal field to the free-energy-shift
of the a-atomic state:

δFa = − 1
π

P

⎡

⎣
∑

n

µan
α µna

β

+∞∫

−∞
dω

G′′
αβ(ω)

(1 − e
− �ω

kB T )(ω + ωna)

⎤

⎦.

(A.1)
(In this part of the calculation, we will not write the Greek
subscripts — which indicate Cartesian components — for
the linear susceptibility

↔
G(ω) =

↔
G′(ω) + i

↔
G′′(ω)of the re-

flected field.)
The principal part comes only from: ω + ωna �= 0.

When ω = 0, G′′(0) = 0, because it is an odd function of
frequency, and the integral remains finite for this value of
omega. On the other hand, the poles of G′′ correspond to
the poles of Fresnel coefficients which give the dispersion
relation of surface modes. In our model (see Appendix B),

they cannot be real when one introduces dissipation into
the medium.

Let us calculate first the integral:

P

+∞∫

−∞
dω

G′′(ω)

(1 − e−
�ω
KT )(ω + ωna)

=

lim
η→0+

+∞∫

−∞
dω

G′′(ω)

(1 − e
− �ω

kB T )(ω + ωna + iη)
+ iπ

G′′(−ωna)

1 − e
�ωna
kB T

which is the sum of two terms I and J :

I(ωna) = lim
η→0+

+∞∫

−∞
dω

G′′(ω)

(1 − e
− �ω

kB T )(ω + ωna + iη)

= lim
η→0+

I(ωna + iη)

J(ωna) = iπ
G′′(−ωna)

1 − e
�ωna
kBT

= −π
iG′′(ωna)

1 − e
�ωna
kB T

G′′ is an odd function of frequency and ωna =
(En − Ea)/� can be either >0 or <0, (if state |a〉 is an
excited state).

In the following, we write: Ωna = ωna + iη, (η being
positive), and we introduce functions of defined parity,
using:

1
1 − e−x

=
1
2

(
1 + coth

x

2

)
,

1
ω + Ωna

=
Ωna

Ω2
na − ω2

− ω

Ω2
na − ω2

,

and the parity-properties of the field-susceptibility:
G(ω) = G′(ω) + iG′′(ω), G′ even and G′′ odd, to write:
G′′(ω) = [G(ω) − G(−ω)]/2i.

We obtain:

I(Ωna) =

+∞∫

−∞
dω

G′′(ω)

(1 − e
− �ω

kB T )(ω + Ωna)

=
1
2

+∞∫

−∞
dω

G′′(ω)
(ω + Ωna)

+
1
2

+∞∫

−∞
dω

G′′(ω)
(ω + Ωna)

× coth
�ω

2kBT
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I(Ωna) = I1(Ωna) + I2(Ωna)

I1(Ωna) =
1
4i

+∞∫

−∞
dω

G(ω)
ω + Ωna

− 1
4i

+∞∫

−∞
dω

G(−ω)
ω + Ωna

=
1
4i

+∞∫

−∞
dω

G(ω)
ω + Ωna

− 1
4i

+∞∫

−∞
dω′ G(ω′)

−ω′ + Ωna

I1(Ωna) =
1
4i

+∞∫

−∞
dωG(ω)

(
1

ω + Ωna
+

1
ω − Ωna

)

=
2iπ

4i
G(Ωna) =

π

2
G(Ωna). (A.2)

To get (A.2), we close the integral in the upper ω-complex
plane (see Fig. 5). The only pole inside the integral contour
is ω = Ωna = ωna + iη. G also can have poles, but only in
the lower plane, as we will see when the dissipation into
the dielectric is introduced via an imaginary part of the
dielectric constant.

Keeping only the even part of the integrand in I2, we
can write:

I2(Ωna) =
1
2

+∞∫

−∞
dω

G′′(ω)
ω + Ωna

coth
�ω

2kBT

=
1
2

+∞∫

−∞
dω

Ωna

Ω2
na − ω2

G′′(ω) coth
�ω

2kBT

I2(Ωna) =
1
4i

+∞∫

−∞
dω

Ωna

Ω2
na − ω2

G(ω) coth
�ω

2kBT

− 1
4i

+∞∫

−∞
dω

Ωna

Ω2
na − ω2

G(−ω) coth
�ω

2kBT

I2(Ωna) =
1
2i

+∞∫

−∞
dω

Ωna

Ω2
na − ω2

G(ω) coth
�ω

2kBT

I2(Ωna) = − π

2
G(Ωna) coth

�Ωna

2kBT

+ π

∞∑

k=0

′ 2kBT

�
G(iξk)

Ωna

Ω2
na + ξ2

k

. (A.3)

The last formula is obtained after integration in the
complex-plane on the same contour as for I1(Ωna) (Fig. 5),
but now, the integrand has several poles: +Ωna, near the
real axis, and ωk = iξk = ik(2πkBT/�), on the imaginary
axis. The prime after the sign sum is for taking a factor
1/2 for k = 0.

Fig. 5. Integration scheme in the ω-complex plane. The inte-
gration over the closed contour is the sum of an integral over
real frequencies which gives the integral of equation (A.2) when
R → ∞, and of an integral over the half-circle which tends to
zero when R → ∞.

Finally:

I(Ωna) = I1(Ωna) + I2(Ωna)

= π

[

−1
2
G(Ωna) coth

�Ωna

2kBT

+
∞∑

k=0

′ 2kBT

�
G(iξk)

Ωna

Ω2
na + ξ2

k

]

+
π

2
G(Ωna)

(A.4)

at temperature T .
(Now, we write again the subscripts α, β, to be summed

over when repeated)

δFa = − 1
π

∑

n

µan
α µna

β [I1αβ(ωna) + I2αβ(ωna)+Jαβ(ωna)].

Taking the limit η → 0+ in (A.2, A.3), one obtains:

I1αβ(ωna) =
π

2
Gαβ(ωna)

I2αβ(ωna) = − π

2
Gαβ(ωna) coth

�ωna

2kBT

+ π
∞∑

k=0

′ 2kBT

�
Gαβ(iξk)

ωna

ω2
na + ξ2

k

Jαβ(ωna) = iπ
G′′

αβ(−ωna)

1 − e
�ωna
KT

= −π
iG′′

αβ(ωna)

1 − e
�ωna
kBT

= − [Gαβ(ωna) − G′
αβ(ωna)]

π

2

×
(

1 − coth
�ωna

2kBT

)

δFa = −
∑

n

µan
α µna

β

[
G′

αβ(ωna)

1 − e
�ωna
kBT

+
∞∑

k=0

′ 2kBT

�
Gαβ(iξk)

ωna

ω2
na + ξ2

k

]

. (A.5)
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We can introduce the polarizability of state |a〉 at imagi-
nary frequency:

αa
αβ(iξ) =

2
�

∑

n

ωnaµ
an
α µna

β

ω2
na + ξ2

,

to obtain finally:

δFa = −
∑

n

µan
α µna

β

G′
αβ(ωna)

1 − e
�ωna
kBT

− kBT
∞∑

k=0

′Gαβ(iξk)αa
αβ(iξk). (A.6)

To introduce positive frequencies only and then numbers
of occupation of the field modes, we re-write it in sepa-
rating the couplings in emission (n′ < a) from those in
absorption (n > a):

δFa = +
∑

n>a

µan
α µna

β

1

e
�ωna
kB T − 1

ReGαβ(ωna)θ(ωna)

−
∑

n′<a

µan′
α µn′a

β

e
�ω

an′
kB T

e
�ω

an′
kB T − 1

ReGαβ(ωan′)θ(ωan′ )

− kBT

∞∑

k=0

′Gαβ(iξk)αa
αβ(iξk). (A.7)

In the limit of low temperature, if the two functions G and
α do not vary too much on the interval, dξ = 2πkBT/�,
we recover the formula for zero temperature:

With:

ωk = iξk = ik
2πkBT

�
,

dξ = ξ1 − ξ0 = ξ1 = ξk+1 − ξk =
2πkBT

�

− kBT

∞∑

k=0

′Gαβ(iξk)αa
αβ(iξk) −→

T→0K

− �

2π

∞∫

0

dξGαβ(iξ)αa
αβ(iξ).

Here we have to recall that, in all these cases, the term
in G(iξ) which dominates the variation of G with ξ is
exponential: e−

2ξz0
c , where z0 is the distance of the atom

to the surface (2z0, distance between the atom and its
image in the static limit). This exponential term will not
vary too much on a frequency-interval 2πkBT/� if the
condition: kBT � �c/4πz0 holds.

On the other hand, the polarizability (of Lorentzian
form: ωna/(ξ2 + ω2

na)) will not vary too much on the same
interval if the condition kBT � �ωna is verified for every
positive frequency of transition of the atom ωan′ or ωna.

If the two conditions hold, one can use the low-
temperature formula and then we have a dependence in
1/z3

0 or a 1/z4
0 for the contribution of a given transition

to the shift, depending on: c/2z0 	 ωna (near field limit),
or c/2z0 � ωna (far field limit).

For example, in the case of an atomic transition at
40 µm and a temperature of 400 K, for distances of
100 nm, we are in the case kBT ≈ �ωan, so one has:
�c/4πz0 	 kBT ≈ �ωan ≈ �2πc/λna if z0 � λna/8π2 ≈
0.5 µm, which will be a condition more restrictive than:
c/2z0 	 ωna = 2πc/λna if z0 � λna/4π ≈ 3 µm.

Even if one can consider being in the near-field limit,
one needs to take the finite T formula to express the free-
energy shift for an experiment at 600 K.

Appendix B: Comparison with the Barton’s
work [10] in the electrostatic limit

Barton gives, for the increase of the free-energy shift (rel-
atively to the T = 0 case) of any atomic level “a”, in the
case of an isotropic medium ([10], Eq. (7.19)):

δFB
a (T ) = − σ2

8z3

∑

n

(

2 |µna
z |2 +

∣
∣
∣µna

‖
∣
∣
∣
2
)

×
∞∫

0

dω

(
1

e
�ω

kBT − 1

)
ωnaω

ω2
na − ω2

g(ω, ωs) (B.1)

where:

g(ω, ωs) =
(2Γ/π)ω2

s

(ω2
s − ω2)2 + ω2Γ 2

(B.2)

and:

σ2 =
ε(0) − 1
ε(0) + 1

− ε(∞) − 1
ε(∞) + 1

. (B.3)

This makes use of a one surface-polariton model with a
dielectric constant satisfying (Eq. (3.1)):

ε(ω) = η
ω2

L − ω2 − iωΓ

ω2
T − ω2 − iωΓ

. (B.4)

The frequency of the surface-polariton being then:

ωs =

√
ηω2

L + ω2
T

η + 1
.

We want to make a link with the formula (2.7):

δFa(T ) = − 1
π

P

⎡

⎣
∑

n

µan
α µna

β

+∞∫

−∞
dω

G′′
αβ(ω)

(1 − e
− �ω

kB T )(ω + ωna)

⎤

⎦

(B.5)
the principal part P being taken at: ω + ωna = 0.

In the electrostatic limit, and for an isotropic medium,
the linear susceptibility can be written (Eq. (3.2)):

Gxx(ω) = Gyy(ω) =
1
2
Gzz(ω) =

1
8z3

ε(ω) − 1
ε(ω) + 1

,

Gαβ = 0 if α �= β.
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That gives for the imaginary part of G:

G′′
xx(ω) = G′′

yy(ω) =
1
2
G′′

zz(ω) =
1

8z3
Im

ε(ω) − 1
ε(ω) + 1

.

In our one-polariton model, one has:

Im
ε(ω) − 1
ε(ω) + 1

= σ2 ω2
sωΓ

(ω2
s − ω2)2 + ω2Γ 2

G′′
xx(ω)=G′′

yy(ω) =
1
2
G′′

zz(ω) =
σ2

8z3

ω2
sωΓ

(ω2
s − ω2)2 + ω2Γ 2

.

(B.6)
With our notations, Equation (B.1) can also be written:

δFB
a (T ) = − 1

π
P

[
∑

n

|µna
α |2

×
∞∫

0

dω
2

e
�ω

kB T − 1

ωna

ω2
na − ω2

G′′
αα(ω)

⎤

⎦ , (B.7)

the principal part is for ω �= ωna (ωna > 0) or else for
ω �= −ωn′a (ωn′a < 0).

So we have to compare (B.5) with (B.7), or else:

+∞∫

−∞
dω

1

(1 − e
− �ω

kB T )(ω + ωna)
G′′

αα(ω)

with:
∞∫

0

dω

(
1

e
�ω

kB T − 1

)
2ωna

ω2
na − ω2

G′′
αα(ω)

G′′ is an odd function of omega (see [8])

1

(1 − e
− �ω

kBT )(ω + ωna)
=

(

coth
�ω

2kBT
− 1

e
�ω

kB T − 1

)(
ωna

ω2
na − ω2

− ω

ω2
na − ω2

)

.

Multiplying by G′′ and keeping only the even parts of the
product, one has:

+∞∫

−∞
dω

1

(1 − e
− �ω

kB T )(ω + ωna)
G′′

αα(ω) =

+∞∫

−∞
dω[A(ω) + B(ω) + C(ω)]G′′

αα(ω) (B.8)

with:

A(ω) = coth
�ω

2kBT

(
ωna

ω2
na − ω2

− ω

ω2
na − ω2

)

when multiplied by G′′, the first term of A only contributes
to the integral (B.8)

B(ω) = − 1

e
�ω

kBT − 1

ωna

ω2
na − ω2

= −1
2

(

−1 + coth
�ω

2kBT

)
ωna

ω2
na − ω2

,

when multiplied by G′′, only the second term of B con-
tributes to the integral

C(ω) =
1

e
�ω

kB T − 1

ω

ω2
na − ω2

=
1
2

(

−1 + coth
�ω

2kBT

)
ω

ω2
na − ω2

.

Here only the first term will contribute to the inte-
gral (B.8), which becomes an integral over positive fre-
quencies

+∞∫

−∞
dω[A(ω) + B(ω) + C(ω)]G′′

αα(ω) =

∞∫

0

dωG′′(ω) coth
(

�ω

2kBT

)
ωna

ω2
na − ω2

−
∞∫

0

dωG′′(ω)
ω

ω2
na − ω2

.

This gives in fine:

+∞∫

−∞
dω

G′′
αα(ω)

(1 − e
− �ω

kB T )(ω + ωna)
=

∞∫

0

dωG′′(ω)
2

e
�ω

kBT − 1

ωna

ω2
na − ω2

+

∞∫

0

dωG′′(ω)
1

ωna + ω
. (B.9)

The term on the left-hand side of equation (B.9) corre-
sponds to our formula (2.7 or B.5) giving δFa(T ). On
the right-hand side, the second term represents the shift
δEa(0) = δFa(0) for T = 0+ and the first one is Barton’s
formula (B.7) giving δFB

a (T ).
So, we have the identity δFB

a (T ) = δFa(T ) − δEa(0).
Note that Barton gives his theoretical result under the

form of an integral over real frequencies. On the oppo-
site, the integration of (2.7) in the analytical plane al-
lows us to discriminate the resonant terms in absorp-
tion or in emission, and, at the same time, the discrete
sum over Matsubara poles (2.11). We have taken a single
surface-polariton model for the medium to illustrate the
non-retarded case for a single plane interface, but equa-
tion (2.11) has been obtained in the general retarded case
for any form of surface and any real medium.
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As an illustration, let us consider the main resonance
of sapphire [9] which corresponds to a surface-polariton at
12.21 µm and model it with transverse and longitudinal
modes under the form:

ε(ω) = η
ω2

L − ω2 − iωΓ

ω2
T − ω2 − iωΓ

.

When we take as unit the frequency of the surface-
polariton ωs, we obtain:

ε(x) = η
x2

L − x2 − ixδ

x2
T − x2 − ixδ

,

with: x = ω/ωs, δ = Γ/ωs.
We have in this way the numerical value we use to do

some simulations (Figs. 1, 3 and 4):

ε(x) = 2.71
1.092 − x2 − ix(1.5 × 10−2)
0.702 − x2 − ix(1.5 × 10−2)

.
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